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THE EFFECT OF CONJUGATED AND RADIANT HEAT EXCHANGE ON THE PROCESS OF 
NON-STATIONARY COMBUSTION OF THE PRODUCTS OF INTENSE GASIFICATION OF 

A SOLID IN A STREAM OF GAS* 

V.M. AGRANAT AND D.A. GUBIN 

This paper develops further the results obtained in /l-4/ and uses the 
approximate mathematical model /2/ of the combustion of the products of 
intense gasification of the neighbourhood of the leading stagnation 
point of the body to analyse the effect of the conjugation parameters on 
the heat exchange, radiation and other factors on the conditions of 
uniqueness and stability of the stationary combustion modes. When the 
gasification is carried out at a constant mass flow rate, an analogy is 
established, depending on the relations between the parameters of the 
problem, between the model in question and the models of a homogeneous 
chemical continuous action reactor with a fluidized catalyst layer, and 
a reactor with a temperature regulator /5/. Simple necessary conditions 
for the instability of the stationary modes and the appearance of self- 
excited oscillations are obtained. A strong stabilizing influence of 
the conjugated heat exchange and intense injection on the combustion 
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process is established, and a destabilizing influence of radiant heat 
exchange is found. 

1. k’ormdztion of the problem. Let us consider the flow of high enthalpy gas past the 
leading stagnation point of a spherically blunted body undergoing gasification. We assume 
that a strong injection of gasification products occurs, and that we can neglect near the wall 
the molecular processes of the transfer of momentum, mass and energy, as compared with con- 
vective transfer. We assume that the gas phase reaction rate depends only on the temperature 
and concentration of a single limiting component of the gaseous mixture formed in the course 
of gasification. Then, according to /l, 21 the problem of determining the conditions of ex- 
istence, uniqueness and stability of the stationary modes of heat and mass exchange between 
the neighbourhood of the stagnation point of the streamlined body and the gas flow, reduces 
mathematically to determining the conditions for the existence, uniqueness and stability of 
the stationary solutions of the following boundary value problem written in dimensionless form: 

(1.3) 

Here z, y, is the dimensionless time and coordinate, 5, n are the Dorodnitsyn variables 
in the Liz form, f, 8 are the dimensionless stream function and temperature, C is the mass 
concentration of the rate controlling component, R,, R, are the dimensionless mass rate of 
gasification and gas phase reaction, respectively, a,, a2, /3, y, Dam, ntr nd,, no, nb, n,, nu, npr K,. L, 

Pr, SC, B, are dimensionless parameters, x, y are the coordinates of the orthogonal coordinate 
system attached to the boundary separating the media, r is the radius of transverse curvature 
of the body, u, v are the gas velocity components, p is the density, cP is the heat capacity 
at constant pressure, u is the dynamic viscosity, M is the molecular weight of the gaseous 
mixture, T is the temperature, D is the effective dissusion coefficient, h is the thermal 
conductivity, E,, gr> k,, E,> gz, k, are the activation energy, thermal effect and the pre- 
exponent of the gasification reaction and gas phase reaction respectively, ER is the reduced 
degree of blackness of the system /6/, El, % are the degree of blackness of the gas and the 
wall respectively, U is the Stefan-Boltzmann constant, R is the universal gas constant, a 
prime denotes differentiation with respect to q, and the indices s, H, e, w, * refer, respect- 
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ively, to the parameters of the condensed phase, the parameters of condensed phase as y,-+ co, 
the parameters of gas phase on the external boundary of the boundary layer, the parameters on 
the boundary separating the media, and to characteristic quantities. 

In deriving Eqs.(l.l), describing the heat and mass transfer in the gaseous phase near 
the leading stagnation point of the solid, we assumed that the gas is optically transparent, 
the Prandtl and Schmidt numbers and the product of density and viscosity are all constant, 
the gas mixture behaves as a binary mixture /7/ and the specific heat capacities of the 
various components are constant and equal to each other. The equations of continuity and 

motion were regarded as quasistationary. 
We find that in the presence of the gas-phase reaction (R,# 0) and injection (1, f U), 

the temperature and concentration gradients at the boundary separating the media are, in 
accordance with (1.1) and /a/, non-zero. Thereforee, when writing down the laws of conser- 
vation of mass and energy at the boundary separating the media, we have retained in (1.3) the 
terms characterizing the energy and mass transfer caused by heat conduction and diffusion 
processes. 

Since the aim of this paper is to make a qualitative study of the modes of heat and mass 
transfer, there is no need to use the actual initial conditions. 

To fix our ideas, we shall make additional assumptions about the kinetics of 
gasification and the gas phase reaction. Let the gas phase reaction be of first order in the 
limiting component, and obey Arrhenius's law. We assume that the gasification is exothermic 
(al = + 1) and is carried out at a constant mass rate ((pu), = con&), h is a linear function 
of temperature, and the molecular weight of the mixture is constant. We choose as the 

characteristic temperature T, the temperature of the unperturbed gas flow T,. and this yields 
8, = 0. 

Under the above assumptions we can use the method in /2/ based on repeated integration 
of Eq.(1.2) in ys from 0 to 00, and evaluation of the resulting integral /9/, to reduce the 
boundary value problem (l.l)-(1.3) to the second-order dynamic system 

(1.4) 

L,a(8,-e,,)+C,C,C,exp 

Q = %+ QR = eRaT,(, qk = 

Here a is the effective dimensionless mass exchange coefficient, c, and c, are 
first and second Damkohler gasification number for a gas-phase reaction 

the 

Damkohler gasification number, 
c, is the second 

Q is the relative radiant flux, and V, is the kinematic 
viscosity on the external boundary of the boundary layer. 

System (1.4) describes the changes, with time,of the relative mass concentration c, of 
the intermediate limiting component and of the dimensionless temperature 8,, at the boundary 

separating the media. In this manner we reduce the analysis of the possible modes of heat 
and mass transfer in the problem in question to a qualitative investigation of a dynamic, 
multiparameter system (1.4). 

2. ~~Zysis of the mathematica2 mode1 and the physical interpretation of the results. 
The dynamic system (1.4)is a generalization of the systems discussed in /3, 10, ll/, and a 
special case of the system described in /2/. The latter circumstance enables us to use the 
results of /2/ to study (l-4), such as the principle of non-parity of the equilibrium states, 
the presence of a cycle without contact and the conditions of mild excitation of selfexcited 
oscillations, established in /2/ and /5, 12, 13/. 

When there is no radiant heat exchange (Q -- 0), system (1.4) will differ from the model 
of a non-isothermal homogeneous chemical continuous-action reactor studied in detail in /5/, 
the gas-phase diffusion model /3/, and the model of heterogeneous combustion in the boundary 
layer /lo/, when the factor E, is present in the expression for Q,, which plays the part of 
the conjugation parameter of the problem. Generally speaking, U ,< E = (1 + (h,p,)/(&))-' < 1, 
where the equality signs correspond to the limiting cases of infinite thermal conductivity 
of the body (h, = OO) and thermally insulated wall (1, .-y 0). which do not occur in practice. 

In the majority of heat transfer problems of practical importance, E is a small parameter. 
Indeed, when the thermal conductivity k, is finite we find, as a rule, that 
the density 

& -+ h, and 
p. of the condensed phase at moderate gas pressures will appreciably exceed the 

density of the gas Pe (P,%&). and consequently E< 1. If C@<l. then the rates of change 



of %d and 'C, will differ significantly from each other since Q,IP, = O(e)(L, - l,c,- 1). 

Moreover, BPJBC, -c 0. Therefore, when eel, we can apply to system (1.4) the method of 
quasistationary concentrations /5/, according to which the analysis of system (1.1) can be 
reduced to the analysis of a single differential equation and a single finite relation: 

The equation in (2.1) is analogous to the equation of a thermal explosion /12/. It has 
a set of stationary solutions, although the selfexcited oscillations and oscillatory instability 
are inadmissible in the dynamic first-order system (2.1) for any single-valued function Q1 
/13/. 

The condition Ps > PC is violated when the gas pressures are of the order of 10" 
atmospheres, in which case Ps - PC and therefore s&l. It can also be violated when the 
body is porous (p, is small) or a dusty gas (pc - p,). 

When e<l and Q = 0, we shall write system (1.4) in the form 

l&z* 

dr== a 
-x*exp(- +) +z(x,--*) 

dug ~=s*exP(-+-)+m(%- YZ) 
2 

(2.2) 

eJwoC 
z*=A, y* = RT eRq& 

ECP 
2, 

4 
X0 =Eacpv y, = +- T,, 

r,+, 
ZScf *p 

l=‘o, m=eLll 
ka 

We know /5/ that the qualitative properties of the solutions of system (2.2) depend 
essentially on the magnitude of the parameter L, = l/m characterizing the ratio of the rates 
of mass and heat transfer. When L,< 1 (a homogeneous reactor), the oscillatory instability 
of the stationary solutions and selfexcited oscillations are possible, while when L,>l (a 
reactor with fluidized catalyst bed) the non-stationary phenomena indicated are not possible, 
and a stable aperiodic stationary mode (or two such modes) will always exist. 

The direct influence of the Lewis number L on the stability of combustion is opposite, 
in the present problem, to that experienced in the case of homogenous combustion /l-3, 14/. 
If the thermokinetic oscillations resulting from the thermodiffusive instability of the flame 
are possible in a homogeneous system only when L< 1 /l/, then selfexcited oscillations in 
the problem in question dealing with intense gasification may appear only when L, = Ln, >I, 
since the necessary condition of their existence L,< 1 has the form L, > Il.? or F > c* = 
l/L, where e<l. This can obviously be explained by the fact that in this case the material 
controlling the rate of gas-phase reaction near the body is not brought in by diffusion, which 
causes the removal of material from the combustion zone into the boundary layer, but by injec- 
tion resulting from the gasification process. 

Since for many gases L,- 1 and E<. 1, it follows that in the majority of cases of 
interest from the practical point of view L, = l/(~L,)>l, and system (2.21, analogous to the 
model of a reactor with a fluidized catalyst layer /5/, will always have a stable, a periodic 
stationary solution. 

Formally, when L, >I and E increases (for example when the gas pressure or porosity 
of the body increases, or when the material disperses), E can pass through its critical value 
E*, which leads to the appearance in system (2.2) of characteristic features of the model of 
a homogeneous continuous-action reactor /5/, and hence to the possibility of oscillatory 
instability and selfexcited oscillations. However, for the majority of real reactive media, 
this passage is impossible since the value of np* = (1 - e,)/e, corresponding to the value of 
E* is often practically impossible to attain (e.g. for petrol vapours L,-4 and npz 3). 
It is, however, interesting that the condition L,<l, which is practically impossible to 
satisfy when h,p 0, becomes, when the model of a thermally insulated wall (h, =O) is used, 
an easily satisfied condition L,> 1 since here we have E=f and L = l/L,. 

Thus in the system in question without radiant heat exchange, under real conditions 
(O<e((l), we find that in case of the usual moderate gas pressures the mechanism of Frank- 
Kamenetskii /12/ excitation of thermokinetic oscillations characteristic for the homogeneous 
and some of the heterogeneous systems /l-4, 10, 11, 14/ does not function. It is suppressed 
by the simultaneous stabilizing influence of intense injection and conjugated heat exchange. 

When L, =l(cL1 = I), system (1.4) will be analogous to the system describing a reactor 
with a temperature regulator /5/ 

de 
+ = 1 - c, - w (C,, e,) 

3 
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The necessary condition for the existence of selfexcited oscillations and oscillatory 
instability /2, 5/ for the system (2.3) takes the form lJfaWlaC,>l. From this it follows 
that when there is no radiant heat exchange (U=O) or when there is radiation from the gas 
but not from the wall (U = const) when U' = 0, the oscillatory instability and selfexcited 
oscillations with mild excitation are impossible in system (1.4) when L, = 1. However, when 
the radiant flux from the surface is taken into account, U'> 0 and the necessary condition 
stated above becomes impossible to satisfy. Taking into account the radiation from the 
surface increases the domain of instability. The condition becomes possible when L, = 1, 
while when Q = 0, instability is possible only when L,(l. 

Applying the Routh-Hurwitz conditions /5/ to system (1.4) we can obtain the necessary 
condition of instability of the stationary modes 

L, < L,* = a (1 + 4Q81,,,“S/(Lla)) (2.4) 

where 8,," is the stationary value of 6,,. When condition (2.4) holds, selfexcited oscil- 

lations and oscillatory instability in the system become possible /2, 51. The form of the 
expression for L,* in (2.4) confirms the conclusion made above for L, = 1 which also agrees 
with the results obtained in/ll/, stating that the presence of radiation from the surface 
increases the domain of selfoscillations. Indeed, in the presence of radiation (Q#O) the 
necessary condition of instability (2.4) is less strict than in its absence (0 = 0) when 

L,* = a. Thus the radiation represents a factor which destabilizes the behaviour of the 
system in question. 

The results obtained here should be taken into account in calculating the combustion 
processes of strongly gasifying condensed materials, and in interpreting the results of the 
corresponding experiments. Using the dynamic systems described above and the methods of the 
analytic theory of differential equations /5, 13/, we can easily obtain the critical con- 
ditions of ignition and extinction, and the condition for selfexcited oscillations to occour 
/2-5, lo-12/. 
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ASYMPTOTIC ANALYSIS OF THREE-DIMENSIONAL DYNAMIC EQUATIONS 
FOR THIN TWO-LAYER ELASTIC PLATES* 

I.V. SIMONOV 

In accordance with the method described in /l-3/, a derivation of 
two-dimensional equations of motion is given for a thin two-layer 
(non-symmetric) elastic plate. The mean values of the bending 
stiffness, the density, and Poisson's ratio are found, and the position 
of the middle plane is determined. In the coordinate system attached to 
this plane, the system of equations is separated into quasistatic 
equations for the longitudinal motion and a dynamic equation (of the 
ordinary kind) for the transverse component of the displacement. Unlike 
/l-3/, only one characteristic dimension in the longitudinal direction 
is introduced, which turns out to be sufficient and simplifies the 
analysis. Formulae of the complete field of stresses are provided. 
Stresses, which are of secondary importance for homogeneous plates, may 
be essential when the strength of the joint of the layers is considered. 

1. Pomlation of the problem. We shall consider a two-layer occupying a domain that is 
bounded or unbounded (in one or both directions). We denote by hi,pi,Ei, and Vi the thick- 
ness, the density of the material and the elastic characteristics of the upper layer (i =I) 
and lower layer (i = 2). We choose an orthogonal system of coordinates as sh_own in the figure. 
The xy-plane is parallel to the plane of the plate and the values z = z,, zl, z2 determine the 
plane of complete contact of the layers and the face planes of the plate. On these boundaries 
we impose the following conditions: 

where ‘zag and V = (va, v,, y) are the dimensionless components of the stress tensor and the 

displacement vector, and r:: are given fairly smooth functions of the longitudinal coordi- 
nates and time 7. We use different normalization of the functions and different scale ex- 
tension for different directions: 

uap = E,~pt u=hV, 2h = h, + h, 

(x, y) = I(& q), z = &, t = t,,~, E = h/l 

Here 1 is the least characteristic linear dimension of the pattern of deformation in the 
longitudinal direction, and to is the characteristic time defined as follows: 


